Complex Geometry Exercises

Week 6

Exercise 1. For all $n > 0, k \in \mathbb{Z}$, compute

$$H^n(\mathbb{CP}^n,\mathcal{O}(k))$$
.

Exercise 2. Let $(V^{2n}, \langle \cdot, \cdot \rangle)$ be a Euclidean vector space.

- (i) Show that the space of compatible complex structure is parametrised by two disjoint copies of SO(2n)/U(n).
- (ii) Show that for n=2, this corresponds to two copies of \mathbb{CP}^1 .
- (iii) Show that for n=3, this corresponds to two copies of \mathbb{CP}^3 .

(Hint: Recall the exceptional isomorphisms $\mathrm{Spin}(4) \cong \mathrm{SU}(2) \times \mathrm{SU}(2)$ and $\mathrm{Spin}(6) \cong \mathrm{SU}(4)$.)

For the remainder of the sheet, let $(V^{2n}, \langle \cdot, \cdot \rangle, I)$ denote a Euclidean vector space of real dimension 2n with compatible complex structure I.

Exercise 3. Let $p, q, p', q' \in \mathbb{N}$ with p + q = k = p' + q' and $k \leq n$. Consider the Hodge-Riemann pairing:

$$Q: \bigwedge^{p,q} V_{\mathbb{C}}^* \times \bigwedge^{p',q'} V_{\mathbb{C}}^* \to \mathbb{C}$$
$$(\alpha,\beta) \mapsto (-1)^{\binom{k}{2}} \alpha \wedge \beta \wedge \omega^{n-k} .$$

Show

- (i) Q vanishes unless (p,q) = (q',p').
- (ii) For $0 \neq \alpha \in P^{p,q} \subseteq \Lambda^{p,q}V_{\mathbb{C}}^*$, we have

$$i^{p-q}Q(\alpha, \overline{\alpha}) = [n - (p+q)]! \langle \alpha, \alpha \rangle > 0$$
.

(continues on the back)

Exercise 4. Let $x_1, y_1 = I(x_1), \ldots, x_n, y_n = I(x_n)$ be an orthonormal basis of V. Show that, for any $\alpha \in \Lambda^k V$

$$\Lambda \alpha(X_1, \dots, X_{k-2}) = \sum_{i=1}^n \alpha(x_i, y_i, X_1, \dots, X_{k-2}).$$

Exercise 5. Let $(E, \overline{\partial}_E, h)$ be a holomorphic hermitian vector bundle on X. Show that

- (i) the space of connections on E is an affine space modelled on $\mathcal{A}_X^1(\operatorname{End}(E))$;
- (ii) the space of metric connections on E is an affine space modelled on $\mathcal{A}_X^1(\operatorname{End}(E,h))$;
- (iii) the space of compatible connections on E is an affine space modelled on $\mathcal{A}_X^{1,0}(\operatorname{End}(E))$.

 Use the above to give an alternate proof of the uniqueness of the Chern connection.

Exercise 6. Prove that

(i)
$$\overline{\partial}^* = - * \partial * \text{ and } \partial^* = - * \overline{\partial} *$$
,

- (ii) $\Delta_{\overline{\partial}} = \overline{\Delta_{\partial}}$.
- (iii) $\mathcal{H}^{p,q}_{\overline{\partial}} = \ker \overline{\partial} \cap \ker \overline{\partial}^*$.

Exercise 7. The goal of this exercise is to establish a Hodge isomorphism for vector bundles. Let $(E, \overline{\partial}_E, h)$ be a holomorphic hermitian vector bundle.

- (i) Show that the Hodge star extends naturally to E-valued forms.
- (ii) Show that $\overline{\partial}_E^* = -\overline{*}\overline{\partial}_E\overline{*}$ is an L^2 -adjoint to $\overline{\partial}_E$ with respect to the L^2 -inner product induced by h.
- (iii) Assuming we have an analogous Hodge decomposition, reproduce the argument in the lectures to conclude there is an isomorphism

$$H^q(X, \Omega^p \otimes E) \cong \mathcal{H}^{p,q}(X, E)$$
,

where $\mathcal{H}^{p,q}(X,E) := \ker \Delta_{\overline{\partial}_E}$.